
Tips
& Tricks

Bit Manipulation
Here is my solution for an enhanced bit manipulation
class (see BITMANIP.PAS on the disk). There are some
public domain solutions, which allow you to set or clear
bits, but none I’ve seen allows you to insert or remove
a bit position.

In CLASSES.PAS we find the undocumented TBits
class, which can do most of the job and handle the
necessary bit array size completely dynamically. It
contains a lot of assembler stuff for good performance.
So, I decided to take this AS my ancestor class.

Now we find the well-known problem that we need to
inherit something that is defined in a private section of
a class; in this case we need access to the pointer to
the array, where all bits are maintained (FBits). The
idea was to construct a fake class which makes
something public that was private before:

type
 TFakeBits = class
 public
 FSize : Integer;
 FBits : Pointer;
 end;

In CLASSES.PAS the TBits class starts with the same
declarations, the public is private. Now my enhanced
bit manipulation class can be defined:

type
 tEnhancedBits = class(tBits)
 ffk : tFakeBits;
 constructor Create;
 procedure RemoveBit(idx:integer);
 procedure InsertBit(idx:integer; b:boolean);
 end;

The constructor is:

constructor tEnhancedBits.Create;
begin
 inherited Create;
 ffk:=tFakeBits(self); { <<—— }
end;

So every time I need access to the bit array I can write
ffk.FBits.

There is no additional secret in the BitManip unit in
Listing 1. Perhaps someone has better algorithms in the
RemoveBit and InsertBit methods (with a lot of SHRs and

unit BitManip;
{ unit for bit manipulation }
interface
uses
 Classes;
type
 TFakeBits = class
 public
 FSize: Integer;
 FBits: Pointer;
 end;
 TEnhancedBits = class(tBits)
 ffk : tFakeBits;
 constructor Create;
 procedure RemoveBit(idx:integer);
 procedure InsertBit(idx:integer; b:boolean);
 end;
implementation
uses
 Consts;
const
 BitsPerInt = SizeOf(Integer) * 8;

constructor tEnhancedBits.Create;
begin
 inherited Create;
 ffk := tFakeBits(self);
end;

procedure tEnhancedBits.RemoveBit(idx:integer);
var
 p,j,i : integer;
 tmp : tEnhancedBits;
begin
 { check index }
 if (idx<0) or (idx>=size) then
 raise EBitsError.CreateRes(SBitsIndexError);
 { create temporary class }
 tmp := tEnhancedBits.create;
 { set size of temporary class }
 tmp.size := size-1;
 { load temporary class }
 j := 0;
 for i := 0 to size-1 do
 if (i<>idx) then begin
 tmp[j] := bits[i];
 inc(j);
 end;
 { deallocate bit array of old class }
 Size := 0;
 { set new size }
 Size := tmp.Size;
 { compute size of allocated bit array }
 p := ((tmp.Size + BitsPerInt - 1) div
 BitsPerInt)*sizeof(integer);
 { move new array }
 move(tmp.ffk.FBits^,ffk.FBits^,p);
 { free temporary class }
 tmp.free;
end;

procedure tEnhancedBits.InsertBit(idx:integer;b:boolean);
var
 p,j,i : integer;
 tmp : tEnhancedBits;
begin
 if (idx<0) or (idx>size) then
 raise EBitsError.CreateRes(SBitsIndexError);
 { create temporary class }
 tmp := tEnhancedBits.create;
 {set size of temporary class }
 tmp.size := size+1;
 { load temporary class }
 j:=0;
 for i := 0 to size-1 do begin
 if i=idx then begin
 tmp[j] := b;
 inc(j);
 end;
 tmp[j] := bits[i];
 inc(j);
 end;
 if idx=size then tmp[j] := b;
 { deallocate bit array of old class }
 Size := 0;
 { set new size }
 Size := tmp.Size;
 { compute size of allocated bit array }
 p := ((tmp.Size + BitsPerInt - 1) div
 BitsPerInt)*sizeof(integer);
 { move new array }
 move(tmp.ffk.FBits^,ffk.FBits^,p);
 { free temporary class }
 tmp.free;
end;
end.

➤ Listing 1

58 The Delphi Magazine Issue 17

SHLs), but my version can be understood and is not too
slow. Perhaps one of the Delphi gurus could write an
article on fake classes and how to overcome the private
constraint?

Contributed by Reinhard Greeven,
Email: rgreeven@cincom.com

Version Info
File version information is essential to a better life.
Version info is operating system supported and works
under all versions of Windows. It’s used by the OS and
installation programs (or you) to ensure that your files
and their dependents are as you think: the latest
version!

Unfortunately, Delphi doesn’t add version info to
your EXE or DLL, thus making it very hard on the OS,
you and your installation program to ensure that what
you want to run with is actually what you get! To add a
VERSIONINFO resource to your Delphi app simply do the
following.

First, build the file TEST.RES and add it to any unit in
your project. The file is built by compiling the file
TEST.RC, a Windows resource script – an example is
shown in Listing 2. To turn the .RC file into a .RES file
you have to compile it using a resource compiler.
Borland’s 32-bit one is called BRC32.EXE (note that
BRCC32.EXE is something else!). A typical command
line looks like this:

C:\PROGRAM FILES\DELPHI\BIN\BRC32 -R TEST.RC

This creates TEST.RES. The -R tells the compiler that
you’re going to be adding the .RES manually to your
project: a good idea! To add the file to an existing unit
add the directive {$R TEST.RES}. You could add this
after the similar directive that Delphi adds:

{$R *.DFM}
{$R TEST.RES}

Note that Delphi concatenates your resources to those
added already.

Now press F9 to rebuild the project. That’s it! To test
whether you added it OK open either the File Manager
or Explorer and locate your built .EXE file. Highlight the
file and press Alt Enter. A dialog will appear in which
you will find your version info. In Explorer it’s on a
separate page (in the tabbed dialog) called Version.

Contributed by Peter J Morris, TMS
Email: CompuServe 100016,2751

3D Window Borders
Have you ever noticed how Microsoft’s MDI-based
applications have a professional-looking, 3D border
around the inner part of the main window? (see the
example in Figure 1) If you try creating an MDI program
with Delphi, you’ll find that your main window has a
much less interesting, ‘flat’ look to it. How do Microsoft
get this effect?

➤ Figure 1

VS_VERSION_INFO VERSIONINFO
 FILEVERSION 1,0,0,1
 PRODUCTVERSION 1,0,0,1
 FILEFLAGSMASK 0x3fL
 FILEFLAGS 0x0L
 FILEOS 0x4L
 FILETYPE 0x1L
 FILESUBTYPE 0x0L
BEGIN
 BLOCK “StringFileInfo”
 BEGIN
 BLOCK “040904B0"
 BEGIN
 VALUE “CompanyName”,
 “The Mandelbrot Set (Int’l) Limited\0"
 VALUE “FileDescription”, “Test Application\0"
 VALUE “FileVersion”, “1, 0, 0, 1\0"
 VALUE “InternalName”, “TEST\0"
 VALUE “LegalCopyright”,
 “Copyright \251 1996\0"
 VALUE “LegalTrademarks”, “\0"
 VALUE “OriginalFilename”, “Test\0"
 VALUE “ProductName”, “Test Application\0"
 VALUE “ProductVersion”, “1, 0, 0, 1\0"
 VALUE “FileVersion”, “1, 0, 0, 1\0"
 END
 END
 BLOCK “VarFileInfo”
 BEGIN
 VALUE “Translation”, 0x409, 1200
 END
END

➤ Listing 2

60 The Delphi Magazine Issue 17

An MDI application actually uses three different
types of windows. Firstly, there’s the outermost frame
window which contains all the other windows: it’s the
frame window which hold the menus for your applica-
tion. Secondly, there’s the MDI ‘client’ window which
corresponds to the inner part of the frame window.
Finally of course, there are the individual document
windows themselves.

Getting a 3D border around the edge of the client
window is just a matter of setting a new, Windows 95
extended style bit when creating the client window.
The VCL framework allows you to get at the client part
of an MDI form by using the ClientHandle field.

procedure FindFile(
 initialPath : string; { initial path }
 fileMask : string; { mask to look for }
 recursive: boolean; { search subdirectories? }
 stopOnFirstMatch: boolean; { one match? }
 files: TStringList); { add match(es) to list }
{ Starting at <initialPath>, FindFile will look for a
 match <fileMask>, if <Recursive> is True, all
 subdirectories beneath <initialPath> will be visited
 as well. If an initialPath is not given FindFile
 searches all non-removeable drives. Adds the paths
 where <fileMask> found to <files> }
type
 TAryDrive = array[0..25] of char;
const
 aryDrive: TAryDrive = (’a’, ’b’, ’c’, ’d’ ,’e’, ’f’,
 ’g’, ’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’, ’p’,
 ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’, ’x’, ’y’, ’z’);
var
 currentPath, currentDrive: string;
 i: byte;
 function IsDriveValid(drive: integer): boolean;
 { returns true if a valid drive }
 begin { IsValidDrive }
 { not searching removable drives }
 Result := not (GetDriveType(drive) =
 DRIVE_REMOVABLE);
 if Result then begin
 ChDir(Format(’%s:’, [aryDrive[drive]]));
 Result := (IOResult = 0);
 end;
 end;
 procedure SearchDirectory(fileMask: string;
 path: TFileName);
 function MakePath(path, fileName: TFileName) :
 TFileName;
 function AddSlashIfNeeded(path: string): string;
 begin { AddShlashIfNeeded }
 Result := Path;
 if (not (path = ’’) and
 not (path[Length(path)] = ’\’)) then
 Result := Format(’%s\’, [Result]);
 end;
 begin { MakePath }
 Result := Concat(AddSlashIfNeeded(path), fileName);
 writeln(Format(’Path = %s’, [Result]));
 end;
 var
 searchRec: TSearchRec;
 stopped: boolean;
 begin { SearchDirectory }
 { search the current directory for fileMask }
 stopped := False;
 try
 if FindFirst(MakePath(path, fileMask), faAnyFile,
 searchRec) = 0 then
 repeat
 if searchRec.Attr <> faDirectory then begin

 files.Add(ExtractFilePath(MakePath(Path,
 searchRec.Name)));
 if stopOnFirstMatch then
 stopped := True
 end
 until (FindNext(searchRec) <> 0) or stopped;
 finally
 FindClose(searchRec);
 end;
 if recursive then
 {search the subdirectories for fileMask }
 try
 { Search current directory for subdirectories }
 if FindFirst(MakePath(path, ’*.*’), faDirectory,
 searchRec) = 0 then
 repeat
 with searchRec do
 if (Name <> ’.’) and (Name <> ’..’) and
 (Attr = faDirectory) then
 SearchDirectory(fileMask,
 MakePath(path, Name));
 { we have to be gentle to the others apps }
 Application.ProcessMessages;
 until (FindNext(searchRec) <> 0) or stopped;
 finally
 FindClose(searchRec);
 end;
 end;
 begin { FindFile }
 if initialPath <> ’’ then
 SearchDirectory(fileMask, initialPath)
 else begin
 { bookmark current drive and directory }
 GetDir(0, currentPath);
 currentDrive := Copy(currentPath, 1, 1);
 for i := 0 to High(aryDrive) do
 if IsDriveValid(i) then
 SearchDirectory(fileMask, Format(’%s:\’,
 [aryDrive[i]]));
 { reset to previous path }
 ChDir(Format(’%s:’, [currentDrive]));
 ChDir(currentPath);
 end;
end;

procedure TForm1.FormCreate(Sender: TObject);
const
 fileMask = ’*.dll’;
var
 files: TStringList;
begin
 try
 { fill combo box with all paths
 that contain <filemask> }
 files := TStringList.Create;
 FindFile(’’, fileMask, True, False, files);
 comnboBox1.Items.Assign(files);
 finally
 files.Free;
 end;
end;

constructor TMainForm.Create (AOwner: TComponent);
begin
 Inherited Create (AOwner);
 SetWindowLong(ClientHandle, GWL_EXSTYLE,
 GetWindowLong(ClientHandle,
 GWL_EXSTYLE) or WS_EX_CLIENTEDGE);
 SetWindowPos (ClientHandle, 0, 0, 0, 0, 0,
 swp_DrawFrame or swp_NoMove or swp_NoSize
 or swp_NoZOrder);
end;

➤ Listing 3

The code in Listing 3 shows how to add the 3D effect
to your own applications: it’s just a matter of setting
the WS_EX_CLIENTEDGE style bit for the client window.
The SetWindowPos call is just a sneaky way of ensuring
that the window redraws itself immediately. Without
this call in there, you’ll find that the 3D effect doesn’t
appear until you resize the form.

Contributed by Dave Jewell with thanks to
hgibson@cix.compulink.co.uk

Where Is It?
I was looking for some code that searched all the drives
available to a user for a particular file or set of files. I
cam across some freeware components none of which
did quite what I wanted. The example shown in Listing
4 fills a listbox with a list of all the DLLs and their paths.
[Note the use in this example of several layers of nested
procedures and functions, plus recursion. Editor].

Contributed by Tom Corcoran, tomc@unitime.com

➤ Listing 4

62 The Delphi Magazine Issue 17

	Bit Manipulation
	Version Info
	3D Window Borders
	Where Is It?

